Nonlinear Gaussian Mixture Approximation Smoother
نویسندگان
چکیده
منابع مشابه
A Gaussian Mixture Model Smoother for Continuous Nonlinear Stochastic Dynamical Systems: Applications
The nonlinear Gaussian Mixture Model Dynamically Orthogonal (GMM–DO) smoother for highdimensional stochastic fields is exemplified and contrasted with other smoothers by applications to three dynamical systems, all of which admit far-from-Gaussian distributions. The capabilities of the smoother are first illustrated using a double-well stochastic diffusion experiment. Comparisons with the origi...
متن کاملImproved Gaussian Mixture PHD Smoother for Multi-target Tracking
The Gaussian mixture probability hypothesis density (GM-PHD) smoother proposed recently can yield better state estimates than the GM-PHD filter. However, there are two major problems with it. First, the smoothed PHD distribution can not provide a more accurate target number estimate due to the target number estimation bias becoming larger by smoothing. Second, the computational complexity of co...
متن کاملNonlinear Approximation Using Gaussian Kernels
It is well-known that non-linear approximation has an advantage over linear schemes in the sense that it provides comparable approximation rates to those of the linear schemes, but to a larger class of approximands. This was established for spline approximations and for wavelet approximations, and more recently for homogeneous radial basis function (surface spline) approximations. However, no s...
متن کاملGaussian Mixture Approximation by Another Gaussian Mixture for 'Blob' Filter Re-Sampling
A new method has been developed to approximate one Gaussian mixture by another in a process that generalizes the idea of importance re-sampling in a particle filter. This algorithm is being developed as part of an effort to generalize the concept of a particle filter. In a traditional particle filter, the underlying probability density function is described by particles: Dirac delta functions w...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AASRI Procedia
سال: 2012
ISSN: 2212-6716
DOI: 10.1016/j.aasri.2012.11.063